BPMSG

List Resources

Displaying 81 - 100 of 107 (Bibliography: WIKINDX Master Bibliography)
Parameters
List all
Order by:

Ascending
Descending
Use all checked: 
Use all displayed: 
Use all in list: 
Salo, A. A., & Hämäläinen, R. P. (1995). Preference programming through approximate ratio comparisons. European Journal of Operational Research, 82(3), 458–475.  
Added by: Klaus D. Goepel 06 Jun 2019 01:22:20 Asia/Singapore
Koczkodaj, W. W. (2016). Pairwise comparisons rating scale paradox. In N. T. Nguyen & R. Kowalczyk (Eds), Transactions on Computational Collective Intelligence Vol. 9655, (pp. 1–9).Springer.  
Last edited by: Klaus-admin 08 Jun 2019 02:18:52 Asia/Singapore
Gao, J., Sun, L. Y., & Li, M. Y. (2005). Range estimation priority: a method to sift out weak-weighted criteria in AHP. System Engineering Theory and Practice, 25(10), 73–77.  
Added by: Klaus D. Goepel 18 Jun 2019 05:07:05 Asia/Singapore
Grošelj, P., Stirn, L. Z., Ayrilmis, N., & Kuzman, M. K. (2015). Comparison of some aggregation techniques using group analytic hierarchy process. Expert Systems With Applications, 42, 2198–2204.  
Added by: Klaus D. Goepel 07 Jun 2019 07:48:12 Asia/Singapore
Goepel, K. D.2013. Principia mathematica decernendi: Mathematical principles of decision making. Singapore: BPMSG. [Introduction to AHP]  
Last edited by: Klaus-admin 11 Jun 2019 00:10:49 Asia/Singapore
Nguyen, M.-T. (2003). Some prioritisation methods for defence planning No. DSTO–GD–0356Australia: Defense science and technology organisation (DSTO).  
Last edited by: Klaus D. Goepel 09 Jun 2019 03:56:32 Asia/Singapore
Eskandari, H., & Rabelo, L. (2007). Handling uncertainty in the analytic hierarchy process: a stochastic approach. International Journal of Information Technology & Decision Making, 6(1), 177–189.  
Added by: Klaus-admin 08 Jun 2019 06:20:31 Asia/Singapore
Ozturk, D., & Batuk, F.2011. Technique for order preference by similarity to ideal solution (TOPSIS) for spatial decision problems. Samsum, Turkey: Mayis University, Department of Geomatic Engineering. [Article]  
Added by: Klaus D. Goepel 08 Jun 2019 12:14:45 Asia/Singapore
Ishizaka, A., & Lusti, M. (2006). How to derive priorities in AHP: a comparative study. Central European Journal of Operations Research, 14(4), 387–400.  
Last edited by: Klaus-admin 08 Jun 2019 02:32:52 Asia/Singapore
Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.  
Last edited by: Klaus D. Goepel 10 Jun 2019 07:46:20 Asia/Singapore
Saaty, T. L., & Vargas, L. G. (1987). uncertainty and rank order in the analytic hierarchy process. European Journal of Operational Research, 32(1), 107–117.  
Last edited by: Klaus-admin 08 Jun 2019 06:15:06 Asia/Singapore
Whitaker, R. (2007). Validation examples of the analytic hierarchy process and analytic network process. Mathematical and Computer Modelling, 46(7-8), 840–859.  
Last edited by: Klaus D. Goepel 06 Jun 2019 01:53:34 Asia/Singapore
Koczkodaj, W. W., Herman, M. W., & Orlowski, M. (1999). Managing null entries in pairwise comparisons. Knowledge and Information Systems, 1(1), 119–125.  
Last edited by: Klaus D. Goepel 10 Jun 2019 00:44:06 Asia/Singapore
Meesariganda, B. R., & Ishizaka, A. (2017). Mapping verbal ahp scale to numerical scale for cloud computing strategy selection. Applied Soft Computing, 53, 111–118.  
Last edited by: Klaus D. Goepel 08 Jun 2019 09:07:18 Asia/Singapore
Lee, J. W., & Kim, S. H. (2000). Using analytic network process and goal programming for interdependent information system project selection. Computers & Operations Research, 27(4), 367–382.  
Added by: Klaus-admin 08 Jun 2019 06:29:41 Asia/Singapore
Goepel, K. D. (2012). New ahp excel template with multiple inputs. Retrieved June 11, 2019, from https://bpmsg.com/new-a ... e-with-multiple-inputs/  
Last edited by: Klaus D. Goepel 11 Jun 2019 02:25:12 Asia/Singapore
Ishizaka, A. (2014). Comparison of fuzzy logic, AHP, FAHP and hybrid fuzzy AHP for new supplier selection and its performance analysis. International Journal of Integrated Supply Management, 9(1/2), 1.  
Last edited by: Klaus D. Goepel 06 Jun 2019 04:58:33 Asia/Singapore
Lundy, M., Siraj, S., & Greco, S. (2017). The mathematical equivalence of the spanning tree and row geometric mean preference vectors and its implications for preference analysis. European Journal of Operational Research, 257(1), 197–208.  
Last edited by: Klaus D. Goepel 08 Jun 2019 05:35:41 Asia/Singapore
Saaty, T. L., & Ozdemir, M. S. (2003). Why the magic number plus or minus two. Mathematical and Computer Modelling, 38, 233–244.  
Last edited by: Klaus-admin 08 Jun 2019 09:04:26 Asia/Singapore
Ramanathan, R., & Ganesh, L. S. (1995). Using AHP for resource allocation problems. European Journal of Operational Research, 80(2), 410–417.  
Added by: Klaus D. Goepel 10 Jun 2019 07:17:41 Asia/Singapore
1 - 20  |  21 - 40  |  41 - 60  |  61 - 80  |  81 - 100  |  101 - 107
wikindx 5.8.1 ©2019 | Total resources: 107 | Username: -- | Bibliography: WIKINDX Master Bibliography | Style: American Psychological Association (APA) | Database queries: 24 | DB execution: 0.16493 secs | Script execution: 0.87269 secs