Budescu, D. V., Zwick, R., & Rapoport, A. (1986). A comparison of the eigenvalue method and the geometric mean procedure for ratio scaling. Applied Psychological Measurement, 10(1), 69–78. |
|
Last edited by: Klaus-admin 08 Jun 2019 02:29:15 Asia/Singapore |
|
Dong, Y., Xu, Y., Li, H., & Dai, M. (2008). A comparative study of the numerical scales and the prioritization methods in AHP. European Journal of Operational Research, 186, 229–242. |
|
Last edited by: Klaus-admin 11 Jun 2019 09:23:47 Asia/Singapore |
|
Escobar, M. T., Aguarón, J., & Moreno-Jiménez, J. M. (2004). A note on AHP group consistency for the row geometric mean priorization procedure. European Journal of Operational Research, 153, 318–322. |
|
Last edited by: Klaus-admin 11 Jun 2019 09:47:34 Asia/Singapore |
|
Ishizaka, A., & Lusti, M. (2006). How to derive priorities in AHP: a comparative study. Central European Journal of Operations Research, 14(4), 387–400. |
|
Last edited by: Klaus-admin 08 Jun 2019 02:32:52 Asia/Singapore |
|
Kazibudzki, P. T. (2013). On some discoveries in the field of scientific methods for management within the concept of analytic hierarchy process. International Journal of Business and Management, 8(8), 22–30. |
|
Added by: Klaus-admin 05 Oct 2019 17:32:00 Asia/Singapore |
|
Kułakowski, K., Mazurek, J., Ramík, J., & Soltys, M. (2019). When is the condition of order preservation met? European Journal of Operational Research, 227(1), 248–254. |
|
Last edited by: Klaus D. Goepel 08 Jun 2019 05:33:29 Asia/Singapore |
|
Lundy, M., Siraj, S., & Greco, S. (2017). The mathematical equivalence of the spanning tree and row geometric mean preference vectors and its implications for preference analysis. European Journal of Operational Research, 257(1), 197–208. |
|
Last edited by: Klaus D. Goepel 08 Jun 2019 05:35:41 Asia/Singapore |
|
Tomashevskii, I. L. (2014). Geometric mean method for judgement matrices: Formulas for errors. arXiv e-prints, |
|
Last edited by: Klaus D. Goepel 08 Jun 2019 05:34:38 Asia/Singapore |
|
Triantaphyllou, E. (2001). Two new cases of rank reversals when the ahp andsome of its additive variants are used that do not occurwith the multiplicative ahp. Journal of multi-criteria decision analysis, 10, 11–25. |
|
Added by: Klaus-admin 16 Sep 2019 18:19:31 Asia/Singapore |
|
Webb, J. (2018). Estimating uncertainty attributable to inconsistent pairwisecomparisons in the analytic hierarchy process (AHP). Unpublished PhD Praxis, George Washington University, Washington, DC. |
|
Last edited by: Klaus D. Goepel 08 Jun 2019 05:35:11 Asia/Singapore |
|