Czekster, R. M., Jung De Carvalho, H., Zucchetti Kessler, G., Mahlmann Kipper, L., & Webber, T. (2019). Decisor: a software tool to drive complex decisions with analytic hierarchy process. International Journal of Information Technology & Decision Making, 17, |
|
Last edited by: Klaus D. Goepel 23 Jun 2019 13:04:07 Asia/Singapore |
|
Dong, Y., Zhang, G., Hong, W.-C., & Xu, Y. (2010). Consensus models for ahp group decision making under row geometric mean prioritization method. Decision Support Systems, 49, 281–289. |
|
Added by: Klaus D. Goepel 10 Jun 2019 23:19:16 Asia/Singapore |
|
Goepel, K. D. (2014). AHP online software AHP-OS. Retrieved June 11, 2019, from https://bpmsg.com/academic/ahp.php |
|
Last edited by: Klaus D. Goepel 11 Jun 2019 02:26:24 Asia/Singapore |
|
Goepel, K. D. (2018). Implementation of an online software tool for the analytic hierarchy process (AHP-OS). International Journal of the Analytic Hierarchy Process, 10(3), 469–487. |
|
Last edited by: Klaus D. Goepel 25 Jun 2019 17:12:40 Asia/Singapore |
|
Goepel, K. D. 2013, Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises – a new ahp excel template with multiple inputs. Paper presented at International Symposium on the Analytic Hierarchy Process (ISAHP2013). |
|
Last edited by: Klaus D. Goepel 10 Jun 2019 00:59:33 Asia/Singapore |
|
Goepel, K. D.2013. Principia mathematica decernendi: Mathematical principles of decision making. Singapore: BPMSG. [Introduction to AHP] |
|
Last edited by: Klaus-admin 11 Jun 2019 00:10:49 Asia/Singapore |
|
Koczkodaj, W. W. (2016). Pairwise comparisons rating scale paradox. In N. T. Nguyen & R. Kowalczyk (Eds), Transactions on Computational Collective Intelligence Vol. 9655, (pp. 1–9).Springer. |
|
Last edited by: Klaus-admin 08 Jun 2019 02:18:52 Asia/Singapore |
|
Kordi, M. (2008). Comparison of fuzzy and crisp analytic hierarchy process (AHP) methods for spatial multicriteria decision analysis in GIS. Unpublished Thesis Master Thesis, University of Gävle. |
|
Last edited by: Klaus D. Goepel 10 Jun 2019 01:01:40 Asia/Singapore |
|
Kou, G., Ergu, D., Chen, Y., & LIN, C. (2016). Pairwise comparison matrix in multiple criteria decision making. Technological and Economic Development of Economy, 22(5), 738–765. |
|
Last edited by: Klaus D. Goepel 10 Jun 2019 00:57:42 Asia/Singapore |
|
Krejčí, J., & Stoklasa, J. (2018). Aggregation in the analytic hierarchy process: why weighted geometric mean should be used instead of weighted arithmetic mean. Expert Systems With Applications, 114, 97–106. |
|
Last edited by: Klaus D. Goepel 10 Jun 2019 01:34:09 Asia/Singapore |
|
Nguyen, M.-T. (2003). Some prioritisation methods for defence planning No. DSTO–GD–0356Australia: Defense science and technology organisation (DSTO). |
|
Last edited by: Klaus D. Goepel 09 Jun 2019 03:56:32 Asia/Singapore |
|
Sabaei, D., Erkoyuncu, J., & Roy, R. (2015). A review of multi-criteria decision making methods for enhanced maintenance delivery. Procedia CIRP, 37, 30–35. |
|
Last edited by: Klaus D. Goepel 09 Jun 2019 03:25:53 Asia/Singapore |
|
Tastle, W. J., & Wierman, M. J. (2007). Consensus and dissention: a measure of ordinal dispersion. International Journal of Approximate Reasoning, 45, 531–545. |
|
Last edited by: Klaus D. Goepel 10 Jun 2019 00:58:41 Asia/Singapore |
|
Webb, J. (2018). Estimating uncertainty attributable to inconsistent pairwisecomparisons in the analytic hierarchy process (AHP). Unpublished PhD Praxis, George Washington University, Washington, DC. |
|
Last edited by: Klaus D. Goepel 08 Jun 2019 05:35:11 Asia/Singapore |
|